Issue |
MATEC Web Conf.
Volume 215, 2018
The 2nd International Conference on Technology, Innovation, Society and Science-to-Business (ICTIS 2018)
|
|
---|---|---|
Article Number | 01037 | |
Number of page(s) | 4 | |
Section | Emerging Technologies and Applied Science | |
DOI | https://doi.org/10.1051/matecconf/201821501037 | |
Published online | 16 October 2018 |
Development of a Relative Vulnerability Index (RVI) for Estimation of Building Vulnerability towards Tsunami Hazard
1
Department of Civil Enginering, Faculty of Civil Enginering and Design, Institut Teknologi Padang, Indonesia
2
Department of Structure and Material, Faculty of Civil Engineering, Universiti Teknologi Malaysia, Malaysia
3
Department of Civil Enginering, Faculty of Civil Enginering and Design, Bung Hatta University, Indonesia
* Corresponding author: leli.honesti@itp.ac.id
Tsunami hazard is an adverse event, which causes damage to properties and loss of life. The study on the effects of tsunami hazard on building vulnerability can help establish and improve the resilience of the building. The problem in assessing the building vulnerability towards tsunami hazard is significant whereby available models for assessing the risk are not applicable for buildings in Padang, Indonesia. The study developed a new Relative Vulnerability Index (RVI) model to estimate building vulnerability for assessment the risk. Literature review was carried out with regards to model development. The model was grouped in two categories of vulnerability, namely the Water Inundation (WI) and the Building Vulnerability (BV). The water inundation comprises tsunami inundation factor. Then, the building bulnerability consists of both internal and external factors. Contribution of each factor is 1/3 or 33.33% of the overall weighting of the new RVI scores. The new RVI model has applied a formula of 1/3 water (tsunami) inundation factor + 1/3 internal factor + 1/3 external factor. The total value of all weights put together should be equal to 100. To use the model, it is necessary to investigate two internal and external factors based on the characteristics of a building and specific geographichal feature of an area. In conclusion, this study has successfully developed a new RVI model for building vulnerability towards tsunamis. In comparison to other approaches, the model offers an adaptable methodology for the characteristics of the buildings and spesific geographical features of the area.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.