Issue |
MATEC Web Conf.
Volume 211, 2018
The 14th International Conference on Vibration Engineering and Technology of Machinery (VETOMAC XIV)
|
|
---|---|---|
Article Number | 21003 | |
Number of page(s) | 6 | |
Section | TP12: Structural health monitoring | |
DOI | https://doi.org/10.1051/matecconf/201821121003 | |
Published online | 10 October 2018 |
A new automated procedure of modal identification in operational conditions
Politecnico di Milano, ABC Department,
Milan,
Italy
* Corresponding author: mailto:gabriele.marrongelli@polimi.it
Structural Health Monitoring (SHM) strategies are aimed at the assessment of structural performance, using data acquired by sensing systems. Among the different available approaches, vibration-based methods - involving the automation of the modal parameter estimation (MPE) and modal tracking (MT) procedures - are receiving increasing attention. In the context of vibration-based monitoring, this paper presents an automated procedure of modal identification in operational conditions. The presented algorithms can be used to effectively manage the results obtained by any parametric identification method that involves the construction and the interpretation of stabilization diagrams. The implemented approach introduces improvements related to both the MPE and the MT tasks. The MPE procedure consists of three key steps aimed at: (1) filtering a high number of spurious poles in the stabilization diagram; (2) clustering the remaining poles that share same characteristics in term of modal parameters; (3) improving the accuracy of the modal parameter estimates. In the MT procedure the use of a simple statistical approach to define adaptive thresholds together with continuously updated dynamic reference list guarantee an efficient tracking of the most representative structural modes. The advantages obtained through the proposed procedures are exemplified using data continuously collected on the historic masonry tower of San Gottardo in Corte, located in the centre of Milan, Italy. In addition, the ability of the automated algorithms to identify contributions inherent to different vibration modes, even if they are characterized by closely-spaced frequencies and a low discriminant between mode shapes, will be described in details.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.