Issue |
MATEC Web Conf.
Volume 211, 2018
The 14th International Conference on Vibration Engineering and Technology of Machinery (VETOMAC XIV)
|
|
---|---|---|
Article Number | 18007 | |
Number of page(s) | 6 | |
Section | TP5: Rotor dynamics | |
DOI | https://doi.org/10.1051/matecconf/201821118007 | |
Published online | 10 October 2018 |
Analysis of the lateral vibrations of an unbalanced Jeffcott rotor
King Fahd University of Petroleum & Minerals, Mechanical Engineering Department,
31261,
Dhahran,
Kingdom of Saudi Arabia.
This paper examines experimentally and analytically the lateral vibrations of a Jeffcott rotor running at various unbalance states. Using a Bently Nevada RK-4 rotor kit, three states of eccentric mass unbalance were assumed in this study: 0.4g, 0.8g and 1.2g. Measurements of the startup data and the steady state data at rigid and flexible rotor condition were collected using a setup that mimics the vibration monitoring industrial practices. Lagrange method was assumed to construct a linear mathematical model of the investigated rotor, based on rigid rotor assumptions, that can predict analytically the lateral vibrations. The dynamic characteristics of the system, including the linearized bearing induced stiffness, were solely extracted from startup data. It was concluded that the developed twodegrees- of-freedom model was able to predict the lateral vibration at the rigid condition with an error around 5%. Whereas it failed to predict the response at flexible condition with matching accuracy. Unlike the majority of the work done in this field where complex, nonlinear mathematical model were used to model real systems, this work validates the applicability of using simple mathematical models in predicting the response of a real rotorsystem with an acceptable accuracy.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.