Issue |
MATEC Web Conf.
Volume 211, 2018
The 14th International Conference on Vibration Engineering and Technology of Machinery (VETOMAC XIV)
|
|
---|---|---|
Article Number | 18002 | |
Number of page(s) | 6 | |
Section | TP5: Rotor dynamics | |
DOI | https://doi.org/10.1051/matecconf/201821118002 | |
Published online | 10 October 2018 |
Modelling and analysis of a high-speed turbine impeller concerning mistuning
Chair of Structural Mechanics and Vehicle Vibration Technology Brandenburg University of Technology Cottbus-Senftenberg
D-03046 Cottbus
* e-mail: robby.weber@b-tu.de
As-manufactured impellers behave significantly different from nominal impellers. There are no identical blades due to geometric and material deviations. In this paper three model updating procedures are discussed with the objective to achieve realistic models of as-manufactured impellers. The techniques are applied to radial inflow turbine wheel of an exhaust gas turbocharger. The first approach creates a model through optical measurement and mesh morphing. The second approach is based on a contactless measurement of blade individual vibration responses. An iterative update process gains the corresponding mistuning pattern and thus the associated model. Third, a model is found by an optimisation, that identified a mistuning pattern, that fits modal characteristics, which are evaluated during experimental modal analysis at vacuum. In-depth analyses of these models are realised to determine advantages and drawbacks of the procedures.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.