Issue |
MATEC Web Conf.
Volume 211, 2018
The 14th International Conference on Vibration Engineering and Technology of Machinery (VETOMAC XIV)
|
|
---|---|---|
Article Number | 02011 | |
Number of page(s) | 6 | |
Section | NC: Nonlinear Dynamics and Control of Engineering Systems; TP1: Non-linear vibrations | |
DOI | https://doi.org/10.1051/matecconf/201821102011 | |
Published online | 10 October 2018 |
Identifying route to stall flutter through stochastic bifurcation analysis
Department of Mechanical Engineering, Shiv Nadar University,
Tehsil Dadri, UP - 203207,
India
The interaction of an elastic structure such as an airfoil and fluid flow can give rise to nonlinear phenomenon such as limit cycle oscillations, period doubling or chaos. These phenomena are indicated by a change in the stability behaviour of the dynamical known as bifurcations. Presence of viscous effects in the fluid flow can give rise to flow separation which causes a stability change in the system that is identified to happen via a Hopf bifurcation. In such cases, the airfoil exhibits limit cycle oscillations which are torsionally dominant, known as stall flutter. Despite identifying the route to stall flutter under uniform flow conditions, investigating a stall problem under stochastic wind has received minimal attention. The ability of fluctuating flows to change the stability boundaries and disrupt the route to flutter, compels the need to carry out a stochastic analysis of stalling airfoils. Study of stall flutter in such systems under the influence of a time varying sinusoidal gust is undertaken and the route to flutter is identified by carrying out a stochastic bifurcation analysis.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.