Issue |
MATEC Web Conf.
Volume 207, 2018
International Conference on Metal Material Processes and Manufacturing (ICMMPM 2018)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 6 | |
Section | Design and Optimization | |
DOI | https://doi.org/10.1051/matecconf/201820702001 | |
Published online | 18 September 2018 |
Peak Discharge and Hydrograph Assessments Induced by Heavy Rainfall Events Using Tank Model
Department of Spatial Design, Chienkuo Technology University, Changhua City 500, Taiwan, R.O.C.
a Corresponding author: shpeng@cc.ctu.edu.tw
Tank Model is a kind of simulation of rainfall movement in soil horizon. With the runoff and piping rate, the peak discharge could be effectively calculated. Having 17 rain gauge stations in 13 debris flow events during 1996-2010 as the studied cases, the peak discharge at 12 control points along Chenyulan River is simulated. Furthermore, the data in Neimaopu discharge station is established parameters of Tank Model to estimate the peak discharge in Shenmu Village. By comparing with the parameters of Shueili Station and Japanese Granite, the mean error of the parameter in this study is 51.0%, which is better than those of Japanese Granite 189% and Shueili discharge stations 251%. The parameter in this study appears the highest in allowance analysis, showing that it is more suitable for simulating the peak discharge than the other two. In spite that the percentage of the three parameters is still low, Shenmu Village could be ignored as it locates in the sub-basin of Chenyulan River with few factors. The parameters of Tank Model are applied to transform average rainfall into hydrograph so as to solve the problem of no discharge records when analysing the areas with various debris flow simulation programs.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.