Issue |
MATEC Web Conf.
Volume 204, 2018
International Mechanical and Industrial Engineering Conference 2018 (IMIEC 2018)
|
|
---|---|---|
Article Number | 07002 | |
Number of page(s) | 6 | |
Section | Construction | |
DOI | https://doi.org/10.1051/matecconf/201820407002 | |
Published online | 21 September 2018 |
Numerical investigation on the elastic modulus of rubber-like materials by a rigid ball indentation technique
1
Laboratory for Engineering Design and Tribology, University of Diponegoro, 50275 Semarang, Indonesia
2
Laboratory for Surface Technology and Tribology, University of Twente, 7500 AE Enschede, The Netherlands
* Corresponding author: bsetiyana@yahoo.com
The indentation technique has been practically proven to be useful in determining mechanical properties of materials, such as hardness and elastic modulus for rubber-like materials (elastomers). However, tensile test method is often conducted because of obtaining the mechanical strength in addition to the elastic modulus of the elastomer. In this paper, a numerical study is proposed to investigate the elastic modulus of the elastomer by applying Finite Element Analysis (FEA). With the availability of Strain Energy Function (SEF) data from the material testing, the investigation is carried out by indentation technique for Natural Rubber (NR) and Styrene Butadiene Rubber (SBR). On the rubber surface, a rigid ball indenter is pressed under specified indentation force and the contact depth resulted is observed. Based on the ASTM (American Society for Testing and Materials) formulation, the elastic modulus from the indentation technique can be estimated. In general, results show that the elastic modulus obtained from the indentation technique agree with the tensile test results. Thus, the proposed numerical method is validly applied in determining the elastic modulus.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.