Issue |
MATEC Web Conf.
Volume 199, 2018
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018)
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 6 | |
Section | Concrete Deteriorating Mechanisms and Prediction of Durability | |
DOI | https://doi.org/10.1051/matecconf/201819902004 | |
Published online | 31 October 2018 |
Evaluation of the resistance of CAC and BFSC mortars to biodegradation: laboratory test approach
1
LMDC, Université de Toulouse, UPS, INSA, Toulouse, France
2
LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
* Corresponding author: bertron@insa-toulouse.fr
Biodeterioration of cementitious materials in sewer networks is a major concern for health and economic reasons. Essentially, it is due to the biological oxidation of H2S into H2SO4 leading to a local progressive dissolution of the cementitious matrix and the precipitation of expansive products likely to provoke cracks. However, it is widely known that CAC has a better performance in such environments but the mechanisms are not very well understood. Nevertheless, previous studies focused mainly on measuring the mass loss of the specimens accompanied with little information on the chemical alteration of the cementitious matrix. This study aims to compare the performance of CAC and BFSC mortars in sewer conditions using laboratory test (BAC-test). Leaching kinetics were evaluated by concentrations measurements of cementitious cations in the leached solutions and of sulphate production by the microorganisms. Moreover, SEM observations coupled with EDS analyses allowed the identification of the chemical alteration of the cementitious matrix.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.