Issue |
MATEC Web Conf.
Volume 199, 2018
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 8 | |
Section | Concrete Deteriorating Mechanisms and Prediction of Durability | |
DOI | https://doi.org/10.1051/matecconf/201819902003 | |
Published online | 31 October 2018 |
Biodeterioration mechanisms and kinetics of SCM and aluminate based cements and AAM in the liquid phase of an anaerobic digestion
1
LMDC, Université de Toulouse, UPS, INSA Toulouse, France
2
LISBP, Université de Toulouse, INSA, INRA, CNRS, Toulouse, France
* Corresponding author: bertron@insa-toulouse.fr
In biogas structures, concrete faces aggressive media during anaerobic digestion. Biological activities allow the conversion of organic matter into biogas, leading to a medium characterized by a variability of composition in time and space. In order to ensure the sustainability of this expanding industry, solutions for increasing concrete durability are needed. This study aims to analyse the deterioration mechanisms of different binders focusing on the impact of the binder nature on the medium (biochemical composition) during the digestion. Binders with favourable composition to chemically aggressive media were tested: slag cement (CEM III/B), calcium aluminate cement (CAC) and metakaolin-based alkaliactivated material (MKAA), and a reference binder: OPC (CEM I). They were exposed to three anaerobic digestion cycles in liquid phase in laboratory bioreactors. The organic acids and ammonium concentrations of the liquid phase were monitored by GC and HPIC. For OPC and slag cement pastes, the chemical and mineralogical changes were characterized by SEM/EDS and XRD. Locally, the presence of binder materials has an impact on the kinetics of the digestion reaction, and therefore on the quantities of gas produced. Ammonium concentrations were above the XA3 class range. Under the conditions explored, biodeterioration mainly led to the carbonation of cement pastes.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.