Issue |
MATEC Web Conf.
Volume 197, 2018
The 3rd Annual Applied Science and Engineering Conference (AASEC 2018)
|
|
---|---|---|
Article Number | 11003 | |
Number of page(s) | 6 | |
Section | Electrical Engineering | |
DOI | https://doi.org/10.1051/matecconf/201819711003 | |
Published online | 12 September 2018 |
Covered conductor burn-down prevention for distribution line in Indonesia
PLN Research Institute, Transmission and Distribution Department, 12760 Jakarta, Indonesia
* Corresponding author: putu.pramana@pln.co.id
Covered conductor (CC) is used to resolve temporary line to ground fault in the distribution line. However, some cases of CC burn down were found in Indonesia. These phenomena were triggered by lightning strikes that cause transient overvoltage with a magnitude greater than basic insulation level (BIL) of insulator. Consequently, short circuit current will flow through the pinhole on CC. Burn down phenomena will create high impedance fault that is unable to be detected by protection relay, thus the conductor will remain energized and harmful to the surroundings. Therefore, this paper presents study about CC burn down prevention. The study was performed using transient simulation to find the effect of earth wire utilization against the transient overvoltage due to lightning strike. In addition, finite element simulation and laboratory testing were also performed to analyze the effect of power arc device on burn down prevention. The results show that the lightning strike with negative polarity will not cause transient overvoltage with a magnitude greater than the insulator BIL. However, if the lighting strikes have positive polarity then the insulator BIL will be potentially exceeded. Furthermore, the utilization of power arc device will prevent the CC burn down.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.