Issue |
MATEC Web Conf.
Volume 197, 2018
The 3rd Annual Applied Science and Engineering Conference (AASEC 2018)
|
|
---|---|---|
Article Number | 09005 | |
Number of page(s) | 6 | |
Section | Chemical Engineering | |
DOI | https://doi.org/10.1051/matecconf/201819709005 | |
Published online | 12 September 2018 |
Kinetics study on non-isothermal thermochemical liquefaction of corncobs in ethanol-water solution: Effect of ethanol concentration
1
Universitas Sebelas Maret, Chemical Engineering Department, Jl. Ir. Sutami 36 A, Surakarta 57126, Indonesia
2
Universitas Gadjah Mada, Chemical Engineering Department, Jl. Grafika no.2, Yogyakarta 55281, Indonesia
* Corresponding author: bregas@staff.uns.ac.id
Corncobs are potentially processed into bio-oil through thermochemical liquefaction processes. It is difficult to construct kinetics models based on the compounds involved in the reaction. It would be made four kinetic models based on four reaction products, i.e., solids, bio-oil, gas and volatile products. The purposes of the study were to seek kinetics model of thermochemical liquefaction of corncobs in ethanol-water solution and to study the effect of ethanol concentration. The experiment of liquefaction processes of corncobs in ethanol-water solution using sodium carbonate catalyst was performed in the 150 ml autoclave equipped with a magnetic stirrer in the temperature up to 280°C. Four kinetic models were applied to predict the yield of four reaction product lumps. The calculation results were compared to the experimental data. Compared to the others, model 4 was the most realistic and closely matching to the experimental data. In model 4 the reaction mechanism was assumed that biomass (corncobs) first decomposed into bio-oil, followed by decomposition of bio-oil into volatile products reversibly and, finally, volatile products decomposed into gaseous products. The yield of bio-oil increased from 42.05% to 54.93% by increasing to ethanol concentration of 0% to 40%.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.