Issue |
MATEC Web Conf.
Volume 195, 2018
The 4th International Conference on Rehabilitation and Maintenance in Civil Engineering (ICRMCE 2018)
|
|
---|---|---|
Article Number | 03014 | |
Number of page(s) | 10 | |
Section | Geotechnical Engineering | |
DOI | https://doi.org/10.1051/matecconf/201819503014 | |
Published online | 22 August 2018 |
Ground settlement prediction of embankment treated with prefabricated vertical drains in soft soil
1
Department of Civil Engineering, Universitas Muhammadiyah Yogyakarta, Yogyakarta, Indonesia
2
Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
* Corresponding author: muntohar@umy.ac.id
Excessive settlement due to consolidation can cause damage to the structure’s rest on soft soil. The settlement takes place in relatively longer. The preloading and prefabricated vertical drain (PVD) is often applied to accelerate the primary settlement. The issue in this research is the estimation of the settlement. The Asaoka method and the finite element method using PLAXIS-2D are used to estimate the final settlement of a PVD treated embankment. For the former, a complete record of the settlement was required; for the latter, some ground parameters are needed for the PLAXIS-2D analysis, such as the permeability of the soil. Because the installation process of PVD tends to influence the permeability of the in-situ soil around the PVD, the soil permeability after the installation of PVD needs to be adjusted. The numerical results were compared with actual settlement data to find out the best-fit input parameters (i.e. soil permeability) of the actual data. It was found that the best-fit soil permeability (k) used in the numerical study was about one-half of the k value determined from the laboratory test. The Root Mean Square Deviation shows that the settlement predicted by the numerical analysis has approximately 30% of the actual settlement.
Key words: Settlement / Consolidation / PVD / Asaoka method / PLAXIS-2D / Soil permeability
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.