Issue |
MATEC Web Conf.
Volume 195, 2018
The 4th International Conference on Rehabilitation and Maintenance in Civil Engineering (ICRMCE 2018)
|
|
---|---|---|
Article Number | 02013 | |
Number of page(s) | 10 | |
Section | Structural Engineering | |
DOI | https://doi.org/10.1051/matecconf/201819502013 | |
Published online | 22 August 2018 |
A comparative study of base isolation devices in light rail transit structure featured with lead rubber bearing and friction pendulum system
Department of Civil Engineering, Institut Teknologi Sepuluh Nopember, Indonesia
* Corresponding author: santinuraini1992@gmail.com
Advanced nonlinear analysis in light rail transit (LRT) structures has been undertaken to examine the influence of seismic isolation devices for reducing seismic demand. The study employed the use of two types of commercially available bearings, namely lead rubber bearing (LRB) and friction pendulum system (FPS). Six LRT structures, designed to be built in Surabaya, were modelled using computer-aided software SAP2000, where each of the three structures consisted of three types of LRB and FPS placed onto the pier cap to support the horizontal upper-structural member. Nonlinear static pushover and dynamic time history analysis with seven improved ground motion data was performed to gain improved insights on the behavioural response of LRT structures, allowing one to fully understand the supremacy of seismic isolations for protecting the structure against seismic actions. It is shown that both devices manage to isolate seismic forces, resulting in alleviation of excessive base shear occurring at the column. In addition, it is noticeable that the overall responses of LRB and FPS shows marginal discrepancies, suggesting both devices are interchangeable to be used for LRT-like structures.
Key words: Light rail transit / Lead rubber bearing / Friction pendulum system / SAP2000 / Pushover analysis / Time history analysis
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.