Issue |
MATEC Web Conf.
Volume 195, 2018
The 4th International Conference on Rehabilitation and Maintenance in Civil Engineering (ICRMCE 2018)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 10 | |
Section | Construction Materials | |
DOI | https://doi.org/10.1051/matecconf/201819501003 | |
Published online | 22 August 2018 |
Proposed concrete compaction method using an electrical internal vibrator: a review of compaction standard for concrete in laboratory according to SNI 2493:2011
Department of Civil Engineering, Engineering Faculty, Jenderal Soedirman University, Indonesia
* Corresponding author: agus_maryoto1971@yahoo.co.id
SNI 2493:2011 is the Indonesian National Standard containing the procedures for the manufacture and maintenance of concrete specimens in the laboratory. This standard regulates the way that compaction of compressive specimens is performed using internal vibrators in addition to manual compaction. Unfortunately, the amount and duration of vibrator compaction using an internal vibrator are not specified in the standard. This study examines the effect of vibrator duration when using an internal vibrator to compact concrete compressive strength specimens. The specimens used are of cylinders with diameter 15 cm and height 30 cm. 30 specimens were formed by each of the three concrete compaction methods used. The first type is where concrete is compacted manually by a tamping rod, 25 times each layer. The tamping rod is of 16 mm diameter and 62 cm height. The second type is compaction is by using internal vibrator, with 3 compactions per layer, each for 2 seconds. The third type also uses the internal vibrator, except the duration of each compaction is for 5 seconds. The results of compressive strength tests show that the compressive strength of the concrete compacted with the internal vibrator is about 10% higher than when manually compacting the concrete using a tamping rod. This proposed compaction of concrete by using an internal vibrator can be used as an alternative to manual compaction in the manufacture of concrete compressive strength specimens.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.