Issue |
MATEC Web Conf.
Volume 192, 2018
The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018) “Exploring Innovative Solutions for Smart Society”
|
|
---|---|---|
Article Number | 03057 | |
Number of page(s) | 4 | |
Section | Track 3: Food, Chemical and Agricultural Engineering | |
DOI | https://doi.org/10.1051/matecconf/201819203057 | |
Published online | 14 August 2018 |
Effect of calcium precursors on pelletized property and cyclic CO2 capture performance
1
Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
2
Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
3
The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
4
Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
* Worapon Kiatkittipong: kiatkittipong_w@su.ac.th
CaO is widely used for capturing CO2 in large scale application however the work on the manufacture of CaO based pellets for the application of CO2 capture is relatively limited. In this research investigated the effect of calcium precursors (Ca(OH)2, Ca(NO3)2 and Ca(CH3COO)2) and their synthesis method (sol-mixing and wet-mixing) on pelletization. Adsorbent synthesized from Ca(CH3COO)2 as a precursor using sol-mixing pelletize to porous spherical provide the best mechanical strength and CO2 adsorption capacity 0.51 and 0.41 g CO2/ g CaO at first cycle and tenth cycle respectively. The outstanding cyclic performance of Ca(CH3COO)2 sol-mixing can be ascribed to the presence of inert support material i.e. Ca9Al6O18 and Ca12Al14O33 with suitable pore volume to prevent sintering of CaO and structure collapsing at high temperature.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.