Issue |
MATEC Web Conf.
Volume 192, 2018
The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018) “Exploring Innovative Solutions for Smart Society”
|
|
---|---|---|
Article Number | 01046 | |
Number of page(s) | 4 | |
Section | Track 1: Industrial Engineering, Materials and Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/201819201046 | |
Published online | 14 August 2018 |
Effect of tempered bead techniques on maximum HAZ hardness for in service pipeline welding
1
Production Engineering Department, Faculty of Engineering, King Mongkut’S University of Technology Thonburi, Bangkok, Thailand
2
Mechanical and Industrial Engineering Department, Faculty of Engineering, Rajamangala University of Technology Krungthep Bangkok, Thailand
*
Corresponding author : riUichai.p@mailrmutk.ac.th
This research intends to investigate the main factors of tempered bead techniques affecting on maximum HAZ hardness for in-service pipeline welding. Tempering parameters to be considered are the overlap ratio, weld bead sequences, and subsequent welding processes. This research consists of two parts of experimental procedure. Firstly, critical HAZ hardness (< 350 HV) in the first weld bead was estimated using computational simulation. Secondly, welding experiments were conducted with tempered techniques. Experimental setup included the used material of API 5L Gr. B pipe steel with nominal size of DN 200, wall thickness of 8.18 mm, and water piping How of 18.77 m3/hr. As a results, it suggested that the overlap weld ratio of 50h and 75%, weld bead sequences, as well as subsequent SMAW processes, were proficient of reducing significantly maximum HAZ hardness at the weld root. Nevertheless, in the case that the weld root was built up, maximum HAZ hardness was slightly changed with different weld bead sequences.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.