Issue |
MATEC Web Conf.
Volume 192, 2018
The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018) “Exploring Innovative Solutions for Smart Society”
|
|
---|---|---|
Article Number | 01039 | |
Number of page(s) | 4 | |
Section | Track 1: Industrial Engineering, Materials and Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/201819201039 | |
Published online | 14 August 2018 |
Polymer based microneedle patch fabricated using microinjection moulding
1
Synchrotron Light Research Institute (Public Organization), 111 Moo 6, University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
2
Thai-German Institute, 700/1 Moo 1 Amata Nakorn Industrial Estate, Bangna Trad Road, Klongtamru, Muang District, Chonburi, 20000, Thailand
3
Department of Instrumentation and Control Engineering, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
*
Corresponding author : pattanaphong@slri.or.th
This paper presents the development of a polymer based microneedle patch for transdermal drug delivery application using plastic microinjection moulding. Design and analysis of the microneedle cavities and mould insert used in the injection moulding process were carried out using Computer-Aided Engineering (CAE) software. A mould insert with low surface roughness was fabricated using Micro Electrical Discharge Machining (μ-EDM). The injection moulding parameters including clamping force, temperature, injection pressure and velocity were characterized in order to obtain the optimum reproducibility. Solid truncated cone microneedles, made of biocompatible polymethyl methacrylate (PMMA), with a round tip radius of 50 μm and 500 μm in height have been realized by microinjection moulding process demonstrating the potential of a low cost, high production efficiency, and suitable for mass production. In addition, a mould insert of cylindrical microneedles fabricated using X-ray LIGA has been proposed.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.