Issue |
MATEC Web Conf.
Volume 192, 2018
The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018) “Exploring Innovative Solutions for Smart Society”
|
|
---|---|---|
Article Number | 01028 | |
Number of page(s) | 4 | |
Section | Track 1: Industrial Engineering, Materials and Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/201819201028 | |
Published online | 14 August 2018 |
Fourier-spectral-method implementation of deformation in the phase-field crystal model
Department of Industrial Engineering, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
*
email : nirand.pi@kmitl.ac.th
The phase-field crystal (PFC) method is a promising computational model with atomistic resolution and diffusive time scale. In this work, the Fourier-spectral-method (FSM) scheme was developed for evaluating the PFC free energy of a system subjected homogeneous deformation. This scheme addresses the complication where, in numerical implementation of FSM using discrete Fourier transform (DFT), the discretized data may no longer lie along the directions of the Cartesian basis due to deformation. In this scheme, the real-space coordinate transformation is employed so that the (continuous) Fourier transform is performed on the function of the undeformed coordinates. This transformation allows straightforward DFT implementation because the sampling at the undeformed configuration is unaffected by the deformation. This scheme is also shown to be applicable to both the original PFC model and a “CDFT”-type PFC model containing a two-body correlation function.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.