Issue |
MATEC Web Conf.
Volume 190, 2018
5th International Conference on New Forming Technology (ICNFT 2018)
|
|
---|---|---|
Article Number | 14003 | |
Number of page(s) | 7 | |
Section | Dry metal forming, Special session SPP 1676 | |
DOI | https://doi.org/10.1051/matecconf/201819014003 | |
Published online | 18 September 2018 |
Selective oxidation of tool steel surfaces under a protective gas atmosphere using inductive heat treatment
1
Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, 30823 Garbsen, Germany
2
Institut für Umformtechnik und Umformmaschinen (Forming Technology), Leibniz Universität Hannover, 30823 Garbsen, Germany
*
Corresponding author : schoeler@iw.uni-hannover.de
For the realization of liquid lubricant free forming processes different approaches are conceivable. The priority program 1676 “Dry forming - Sustainable production through dry machining in metal forming” addresses this issue in the context of metal forming processes. The present study reports results from one subproject of the priority program that employs selective oxidization of tool steel surfaces for the implementation of a dry sheet metal deep drawing process. Within the present study, specimen surfaces of the tool steel (1.2379) were heat-treated to optimize their tribological properties with respect to sliding wear behaviour in contact with drawn sheet metal (DP600+Z). The heat treatment was designed to result in the formation of selective oxide layers that can act as friction reducing separation layers. The heating setup employed an inductive heating under protective gas atmosphere. Selective oxidation was realized by controlling the residual oxygen content. Specifically, the specimens were heated in the near-surface region just above the annealing temperature, thus avoiding the degradation of mechanical properties in the bulk. Evaluation of hardness along cross-sections of each specimen revealed suitable initial temperatures for the inductive heat treatment. Oxide layer systems were analyzed regarding their tribological sliding wear behaviour after selective oxidation, as well as their morphology and chemical composition before and after the sliding wear tests.
Key words: Dry metal forming / sheet metal forming / tribology
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.