Issue |
MATEC Web Conf.
Volume 188, 2018
5th International Conference of Engineering Against Failure (ICEAF-V 2018)
|
|
---|---|---|
Article Number | 01025 | |
Number of page(s) | 8 | |
Section | Composite Materials: Characterization, Mechanical Behavior and Modeling, Advanced Manufacturing Techniques, Multifunctionality | |
DOI | https://doi.org/10.1051/matecconf/201818801025 | |
Published online | 07 August 2018 |
Hybrid superabsorbent polymer networks (SAPs) encapsulated with SiO2 for structural applications
National Technical University of Athens, School of Chemical Engineering, RNANO Lab – Laboratory of Advanced, Composite, Nanomaterials and Nanotechnology,
9 Heroon Polytechniou str., Zografou Campus,
15773,
Athens,
Greece
* Corresponding author: charitidis@chemeng.ntua.gr
In this work, materials that as additives in cement promote self-sealing/healing properties by the gradual release of water they absorb were synthesized, characterized and evaluated. Specifically, hybrid SAPs that absorb high ammounts of water encapsulated with SiO2 that facilitates their incorporation in the matrix since it improves their chemical affinity were investigated. The structure and morphology of the fabricated SAPs were characterized analytically and confirmed the synthesis of P(MAA-co-EGDMA)@SiO2 nanocomposite. Its particle size is expected to reduce the size of the pores formed due to the absorbing/desorbing water process during the mixing and curing of cement. Moreover, the water absorbance of the above mentioned material as well as its ability to maintain its original structure during subsequent cycles of absorbing/desorbing water from different mediums and specifically from distilled water (DW) and cement slurry filtrate (CS) were evaluated. CS was chosen to mimic the cementitious environment considering the presence of various ions and its pH value (~ 12). The results revealed that the absorption ratio of P(MAA-co-EGDMA)@SiO2 in DW and CS was higher than 1500 wt.% its original dry weight, while SEM pictures proved that the hybrid SAPs maintained their structure after the water absorption tests.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.