Issue |
MATEC Web Conf.
Volume 188, 2018
5th International Conference of Engineering Against Failure (ICEAF-V 2018)
|
|
---|---|---|
Article Number | 01019 | |
Number of page(s) | 8 | |
Section | Composite Materials: Characterization, Mechanical Behavior and Modeling, Advanced Manufacturing Techniques, Multifunctionality | |
DOI | https://doi.org/10.1051/matecconf/201818801019 | |
Published online | 07 August 2018 |
Fabrication of carbon nanotube-reinforced mortar specimens: evaluation of mechanical and pressure-sensitive properties
National Technical University of Athens, School of Chemical Engineering, RNANO Lab – Laboratory of Advanced, Composite, Nanomaterials and Nanotechnology,
9 Heroon Polytechniou str., Zografou Campus,
15773,
Athens,
Greece
* Corresponding author: charitidis@chemeng.ntua.gr
Carbon-based nanomaterials are promising reinforcing elements for the development of “smart” self-sensing cementitious composites due to their exceptional mechanical and electrical properties. Significant research efforts have been committed on the synthesis of cement-based composite materials reinforced with carbonaceous nanostructures, covering every aspect of the production process (type of nanomaterial, mixing process, electrode type, measurement methods etc.). In this study, the aim is to develop a well-defined repeatable procedure for the fabrication as well as the evaluation of pressure-sensitive properties of intrinsically self-sensing cementitious composites incorporating carbon- based nanomaterials. Highly functionalized multi-walled carbon nanotubes with increased dispersibility in polar media were used in the development of advanced reinforced mortar specimens which increased their mechanical properties and provided repeatable pressure-sensitive properties.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.