Issue |
MATEC Web Conf.
Volume 179, 2018
2018 2nd International Conference on Mechanical, Material and Aerospace Engineering (2MAE 2018)
|
|
---|---|---|
Article Number | 03028 | |
Number of page(s) | 7 | |
Section | Aerospace | |
DOI | https://doi.org/10.1051/matecconf/201817903028 | |
Published online | 26 July 2018 |
Research on Applicability of Hot-Bulb Anemometer under Low Pressure
1
Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
2
Beihang University, Beijing 100191, China
a Corresponding author: lxy_422@msn.com
In Mars and other deep space exploration missions, the planetary atmosphere makes the difference in heat transfer characteristics on the planetary surface and on-orbit environment. In order to achieve the purposes of thermal model correction and spacecraft verification in extreme environment, Mars rover needs to be tested in a simulated Mars environment including low pressure, solar heat flux, wind speed and background temperature. Thus, wind speed should be measured at multiple points in the Mars rover thermal test. In a general Mars rover thermal balance test, the requirement for wind speed control and measurement is 0-15m/s under 700Pa pressure. The current anemometer for industrial use is mainly based on the dynamic pressure, heat or ultrasound. They have a small signal and need to be recalibrated at low pressures. In this paper, a constant heat flux hot-bulb anemometer model has been built using dimensionless number analysis method, with which the anemometer response under low pressure has been calculated. A series of calibration test has been employed to verify the model in space environment chamber. The two methods above reached a similar result, which demonstrates the effectiveness of the analysis.
© The Authors, published by EDP Sciences 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.