Issue |
MATEC Web Conf.
Volume 178, 2018
22nd International Conference on Innovative Manufacturing Engineering and Energy - IManE&E 2018
|
|
---|---|---|
Article Number | 06018 | |
Number of page(s) | 7 | |
Section | Mechanical and Manufacturing Equipment Devices and Instrumentation | |
DOI | https://doi.org/10.1051/matecconf/201817806018 | |
Published online | 24 July 2018 |
Use of the experimental modal analysis for analytical lifetime estimation of a bogie frame
1
SC Softronic SRL, Calibration and Mechanical Testing Laboratory, Craiova, No.40, Dolj, Romania
2
Polytechnic University of Bucharest, Sector 6, Splaiul Independentei, No. 313, Romania
3
INMA Bucharest, Sector 1, Blv. Ion Ionescu de la Brad, No. 6, Romania
* Corresponding author: ion.manea@softronic.ro
The fatigue strength validation by tests of the railway bogie frames requires existence of an expensive laboratory and a long time for testing of about 6 to 10 months. Considering these aspects, the European norms admit that fatigue tests can be replaced by finite elements analysis (FEA), with the condition that analytical model to be correctly realized and validated by tests. Experimental modal analysis (EMA) provides a powerful tool for validation of the FEA model by experimental data. The article presents an application for assessment of the fatigue strength of a three-axle locomotive bogie frame. Using Ansys, was carried out the structural analysis of the bogie frame, resulting the modal model characterized by the modal parameters: Eigen frequencies and Eigen shapes. The analytical model was validated by an EMA application carried out on the bogie frame and correlation analysis of the EMA and FEA models. Using a special measuring wheel set, were determined the wheelrail interaction forces for various locomotive running conditions. The analytical structural model, validated through experimental data, and the data files containing the wheel-rail interaction forces, constitutes the input data for the nCode program that evaluates the bogie frame lifetime using appropriate stress curves and a recognized accumulation of damage hypothesis, e.g. the Palmgren-Miner.
© The Authors, published by EDP Sciences, 2018.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.