Issue |
MATEC Web Conf.
Volume 175, 2018
2018 International Forum on Construction, Aviation and Environmental Engineering-Internet of Things (IFCAE-IOT 2018)
|
|
---|---|---|
Article Number | 03025 | |
Number of page(s) | 5 | |
Section | Computer Simulation and Design | |
DOI | https://doi.org/10.1051/matecconf/201817503025 | |
Published online | 02 July 2018 |
Numerical Simulation on Large Deformation of Weak Rock Mass Tunnel Under High Geostress
1
Luo Yang Jing Xin Highway Engineering Technology Development Co.,Ltd., Luoyang 471000, China
2
Institute of Resoursces & Enviroument, North China University of Water Resources and Electric Power, Zhengzhou 450000, China
3
Zheng Zhou Subway Construction Co., Ltd., Zhengzhou 450000, China
a Corresponding author: 1592171001@qq.com
The problem about the stability of tunnel surrounding rock is always an important research object of geotechnical engineering, and the right or wrong of the result from stability analysis on surrounding rock is related to success or failure of an underground project. In order to study the deformation rules of weak surrounding rock along with lateral pressure coefficient and burying depth varying under high geostress and discuss the dynamic variation trend of surrounding rock, the paper based on the application of finite difference software of FLAC3D, which can describe large deformation character of rock mass, analog simulation analysis of surrounding rock typical section of the class II was proceeded. Some conclusions were drawn as follows: (1) when burying depth is invariable, the displacements of tunnel surrounding rock have a trend of increasing first and then decreasing along with increasing of lateral pressure coefficient. The floor heave is the most sensitive to change of lateral pressure coefficient. The horizontal convergence takes second place. The vault subsidence is feeblish to change of lateral pressure coefficient. (2) The displacements of tunnel surrounding rock have some extend increase along with increasing of burying depth. The research conclusions are very effective in analyzing the stability of surrounding rock of Yunling tunnel. These are going to be a reference to tunnel supporting design and construction.
© The Authors, published by EDP Sciences 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.