Issue |
MATEC Web Conf.
Volume 173, 2018
2018 International Conference on Smart Materials, Intelligent Manufacturing and Automation (SMIMA 2018)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 3 | |
Section | Automation and Nontraditional Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/201817302001 | |
Published online | 19 June 2018 |
Energy optimization path planning for battery-powered agricultural rover
Department of Design Manufacture & Engineering Management, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ
* Corresponding author: xiut.yan@gmail.com
Battery life is critical for battery-powered agricultural rovers, so techniques such as optimized moving path planning are of great significance in this field. Finding an optimized path other than straight-line path could save energy and prolong the battery life. Compared with traditional straight-line path planning, an energy-optimized path planning is realized based on artificial potential field algorithm. In simulation studies, most of the uphill is avoided and at least 10.15 % of energy is saved with the optimized path planning. We believe this energy optimization path planning algorithm is a feasible solution to extend the battery life for field operated agricultural rover.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.