Issue |
MATEC Web of Conferences
Volume 172, 2018
3rd International Conference on Design, Analysis, Manufacturing and Simulation (ICDAMS 2018)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 4 | |
Section | Fluids Engineering | |
DOI | https://doi.org/10.1051/matecconf/201817201002 | |
Published online | 12 June 2018 |
Slug-bubble regime identification in a square channel using a IR Sensor
School of Mechanical Engineering, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
* Corresponding author: mvenkat@mech.sastra.edu,
Design of micro thrusters for nano satellites, require a detailed understanding of multiphase flow phenomena in micro/mini-channels. This work focuses on the experimental and numerical investigation of an Infra-red sensor behavior during two phase flow of a slug-bubble train (air-water two-phase flow). The regime flows inside a square channel of sides 2 mm and 0.5 mm thickness made of borosilicate glass. The interference of the slug-bubble train flow pattern on the IR transceiver characteristics is experimentally studied as current signals corresponding to the number of photons received by the photodiode. A numerical model is developed to analyze the IR transceiver characteristics using COMSOL Multiphysics package. The experimental and numerical results are in good agreement and the developed system with proper calibration can be used to design feedback loops for micro thrusters.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.