Issue |
MATEC Web Conf.
Volume 163, 2018
MATBUD’2018 – 8th Scientific-Technical Conference on Material Problems in Civil Engineering
|
|
---|---|---|
Article Number | 08006 | |
Number of page(s) | 8 | |
Section | Energy-Efficient Building Materials | |
DOI | https://doi.org/10.1051/matecconf/201816308006 | |
Published online | 15 June 2018 |
Hygrothermal modelling of masonry blocks filled with thermal insulation
Budapest University of Technology and Economics, Faculty of Civil Engineering, Department of Construction Materials and Technologies, Műegyetem rkp. 3. K.I.85., 1111 Budapest, Hungary
* Corresponding author: nagy.balazs@epito.bme.hu
Ceramic brick as building material has been used for thousands of years. Nowadays, the energy performance of new products has to meet rigorous requirements; therefore, in the design of new ceramic masonry blocks, building physical simulations are essential. The aim of this research is to evaluate existing masonry block shapes filled with different thermal insulation using conjugated heat and moisture transport finite element simulations with material properties measured in laboratory. The research compared four different internal structures: trapezoidal, triangular, rectangular, and with mixed shaped gaps according to existing masonry blocks. In the gaps, different thermal insulations were considered, such as mineral wool, expanded perlite and polyurethane foam. The research demonstrated that the perlite as filling material does not have a great effect on thermal conductivity comparing to unfilled blocks; however, polyurethane foam with an optimal internal structure can improve the thermal performance. Manufacturing inaccuracies in the materials’ hygrothermal properties influences their performance, since a little difference in thermal conductivity has a noticeable impact on thermal transmittance, and it may result in underperformance according to regulations.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.