Issue |
MATEC Web Conf.
Volume 162, 2018
The 3rd International Conference on Buildings, Construction and Environmental Engineering, BCEE3-2017
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 9 | |
Section | Geotechnical and Transportation Engineering | |
DOI | https://doi.org/10.1051/matecconf/201816201005 | |
Published online | 07 May 2018 |
Geotechnical characteristics of some Iraqi gypseous soils
1
Ruhr Universität Bochum, Bochum - Germany
2
Building and Construction Engineering Department, University of Technology, Baghdad, Iraq
* Corresponding author: husn_irq@yahoo.com
In Iraq, especially in the last three decades, extensive developments have been evidenced in the regions of gypseous soils due to the need of construction of many numbers of strategic projects. Failure of different structures constructed on gypseous soil in various regions in Iraq have been noticed. For this purpose, three areas in northern Iraq were selected (Samarra, Tikrit and Baiji) to study their geotechnical characteristics due to their high gypsum contents as well as many engineering problems are faced due to dissolution of gypsum. The experimental work involves testing of many properties such as: scanning electron microscopy (SEM), XRD, chemical, physical, compressibility, collapsibility, shear strength and suction. At low stress level, the test results revealed that, higher collapse potential (CP) is recorded for Tikrit soil. While at low stress level, higher CP is obtained for Baiji soil indicating the increase in CP with decreasing gypsum content. Furthermore, the CP significantly increases with increasing stress level and soaking period at a particular stress level. According to severity classification of the collapse potential, Baiji soil is considered as moderate trouble to slight, while Tikrit soil is considered as trouble to moderate. After soaking, both soils become trouble. As well as, the results showed a reduction in Tikrit soil shear parameters ( φ and c ) after soaking period of 6 and 24 hrs as 12.2 to 9.2% in the internal friction angle and 91.5 to 94.2% in cohesion, respectively with respect to dry condition. Maximum total suction is measured for low consistency soils (liquid limit < 30%) represented by Tikrit soil.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.