Issue |
MATEC Web Conf.
Volume 160, 2018
International Conference on Electrical Engineering, Control and Robotics (EECR 2018)
|
|
---|---|---|
Article Number | 05004 | |
Number of page(s) | 5 | |
Section | Control Theory and Method | |
DOI | https://doi.org/10.1051/matecconf/201816005004 | |
Published online | 09 April 2018 |
Adaptive Terminal Sliding-Mode Control for Servo Systems with Inertia Variations
School of Automation, Nanjing University of Science and Technology, 210094 Nanjing, China
Inertia variations in servo systems greatly affect the control performance. This paper presents an adaptive terminal sliding-mode controller to deal with the problem. Instead of using traditional mathematics model, a characteristic model, which has more advantages in describing time-varying dynamics, is adopted to describe the servo system with inertia variations. The parameters of characteristic model are identified by the recursive least squares algorithm. Then, an adaptive terminal sliding-mode controller is designed based on the characteristic model. Theoretical analysis proves that the quasi-sliding mode is reached in finite steps. Simulation results demonstrate the improvement of tracking performance of the proposed controller.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.