Issue |
MATEC Web Conf.
Volume 160, 2018
International Conference on Electrical Engineering, Control and Robotics (EECR 2018)
|
|
---|---|---|
Article Number | 04007 | |
Number of page(s) | 5 | |
Section | Smart Grid and Application Technology | |
DOI | https://doi.org/10.1051/matecconf/201816004007 | |
Published online | 09 April 2018 |
A simulation training evaluation method for distribution network fault based on radar chart
1
State Grid Xiamen Electric Power Supply Company, 361000 Xiamen, FuJian, P. R. China
2
Power Grid & Distribution Department, Jicheng Electronics Co., Ltd, 250100 Jinan, Shandong, P. R. China
In order to solve the problem of automatic evaluation of dispatcher fault simulation training in distribution network, a simulation training evaluation method based on radar chart for distribution network fault is proposed. The fault handling information matrix is established to record the dispatcher fault handling operation sequence and operation information. The four situations of the dispatcher fault isolation operation are analyzed. The fault handling anti-misoperation rule set is established to describe the rules prohibiting dispatcher operation. Based on the idea of artificial intelligence reasoning, the feasibility of dispatcher fault handling is described by the feasibility index. The relevant factors and evaluation methods are discussed from the three aspects of the fault handling result feasibility, the anti-misoperation correctness and the operation process conciseness. The detailed calculation formula is given. Combining the independence and correlation between the three evaluation angles, a comprehensive evaluation method of distribution network fault simulation training based on radar chart is proposed. The method can comprehensively reflect the fault handling process of dispatchers, and comprehensively evaluate the fault handling process from various angles, which has good practical value.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.