Issue |
MATEC Web Conf.
Volume 157, 2018
Machine Modelling and Simulations 2017 (MMS 2017)
|
|
---|---|---|
Article Number | 01011 | |
Number of page(s) | 8 | |
Section | Methods and systems in machine design | |
DOI | https://doi.org/10.1051/matecconf/201815701011 | |
Published online | 14 March 2018 |
The material parameters for computational modeling of long-fibre composites with textile
Alexander Dubček University of Trenčín, Faculty of Industrial Technologies, I. Krasku 491/30, 020 01 Púchov, Slovakia
* Corresponding author: jan2.krmela@post.cz
In this contribution, the composites with textile fibre (cord) and an elastomer matrix are studied based on computational modeling of car tires in combination with experiments. These composite are applied in tire casings for cars, conveyor belts etc. The aim of this research work of authors is creation of computational models namely for stress-strain analyses of selected parts of radial tire casing. The typically passenger car radial tire casing consists of one or two polyester plies in tire carcass and two steel-cord belts and one polyamide 66 cap ply below tread. The finite element method using the program system ANSYS is applied to the computational modeling. For the determination of the material parameters of elastomer and textile cords as input data to the computational models, it was necessary to perform tests as statically tensile tests. Also the experiments of composites as tests of low cyclic loading of composites are needed for verification analyses between computational results and experimental data. For computational modeling, the modulus of elasticity and Poisson ratio are used as material input parameters of textile reinforcements. The results from the computational modeling and selected results from the tests are presented in this contribution.
Key words: tire / ANSYS / material parameters / tensile test / low cycle loading / PA66
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.