Issue |
MATEC Web Conf.
Volume 156, 2018
The 24th Regional Symposium on Chemical Engineering (RSCE 2017)
|
|
---|---|---|
Article Number | 08003 | |
Number of page(s) | 6 | |
Section | Membrane Science, Material and Technologies | |
DOI | https://doi.org/10.1051/matecconf/201815608003 | |
Published online | 14 March 2018 |
Hydrophylicity Enhancement of Modified Cellulose Acetate Membrane to Improve the Membrane Performance in Produced Water Treatment
Chemical Engineering Department, Faculty of Engineering, University of Diponegoro, Jl. Prof. Sudharto, Tembalang, Semarang, 50239, Indonesia
* Corresponding author: tdkusworo@che.undip.ac.id
Produced water is a wastewater generated from petroleum industry with high concentration of pollutants such as Total Dissolved Solid, Organic content, and Oil and grease. Membrane technology has been currently applied for produced water treatment due to its efficiency, compact, mild and clean process. The main problem of produced water using membrane is fouling on the membrane surface which causes on low permeate productivity. This paper is majority focused on the improvement of anti-fouling performance through several modifications to increase CA membrane hydrophilicity. The membrane was prepared by formulating the dope solution consists of 18 wt-% CA polymer, acetone, and PEG additive (3 wt-%, 5 wt-%, and 7 wt-%). The membranes are casted using NIPS method and being irradiated under UV light exposure. The SEM images show that parepared membrane has asymmetric structure consist of dense layer, intermediete layer, and finger-like support layer. The filtration test shows that PEG addition increase the membrane hydrophilicity and the permeate flux increases. UV light exposure on the membrane improves the membrane stability and hydrophilicity. The imrpovement of membrane anti-fouling performance is essential to achieve the higher productivity without lowering its pollutants rejection.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.