Issue |
MATEC Web Conf.
Volume 136, 2017
2017 2nd International Conference on Design, Mechanical and Material Engineering (D2ME 2017)
|
|
---|---|---|
Article Number | 01010 | |
Number of page(s) | 5 | |
Section | Chapter 1: Simulation | |
DOI | https://doi.org/10.1051/matecconf/201713601010 | |
Published online | 14 November 2017 |
Preparation and Characterization of Modified Silica-Epoxy Hybrid Ceramic Coatings
Military Technical College, Kobry Elkobbah, Cairo, Egypt
a Corresponding author: m.yossry@mtc.edu.eg
Hybrid sol-gel processing of inorganic-organic nanocomposites has been of a great interest over the last decades for being advantageous compared to the conventional addition methods of nanoparticles. In this study, a three-component system was adopted experiencing the design and preparation of different hybrid ceramic coatings based on Diglycidyl ether of Bisphenol A (Epoxy) and 3-Glycidyloxypropyl trimethyloxysilane (GLYMO) by sol-gel technique. The obtained hybrid coatings were cured using different hardeners, Diethylene triamine (DETA) as an organic linker and 3-Aminopropyl triethoxysilane (APTES) as an inorganic/organic linker. Microstructure assessment and the morphology of the prepared hybrids was investigated using FTIR and scanning electron microscopy (SEM) respectively. Mechanical properties (adhesion, and hardness) were determined. The degree of hydrophilicity of the hybrids was assigned depending on the contact angle measurements. Moreover, the thermal properties were investigated using thermogravimetric analysis (TGA). The results showed that the silica content plays an important role in determining the morphology as well as the mechanical, physical, and thermal properties of the coatings. The results showed an improvement in most of the properties of the hybrid coatings with increasing the silica content up to a certain extent. However, further increase in the silica content, leads to a clear deterioration.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.