Issue |
MATEC Web Conf.
Volume 156, 2018
The 24th Regional Symposium on Chemical Engineering (RSCE 2017)
|
|
---|---|---|
Article Number | 05005 | |
Number of page(s) | 6 | |
Section | Materials and Processing | |
DOI | https://doi.org/10.1051/matecconf/201815605005 | |
Published online | 14 March 2018 |
Non-invasive Detection of Human Body Liquor Intake Based on Optical Biosensor
1
Department of Chemical Engineering, University of Santo Tomas, 1008 Manila, Philippines
2
Research Center for the Natural and Applied Sciences, University of Santo Tomas, 1008 Manila, Philippines
* Corresponding author: ecquinto@gmail.com
Alcohol-related incidents are increasing despite the implementation of RA 10586, the Anti-Drunk or Drugged Driving Act of 2013. Conventionally, blood alcohol content (BAC) is tested by gas chromatography or breathalyzers. This work aims to design and fabricate a paper-strip based sensor for the detection of alcohol using saliva as biomedium. The sensor will act as an alternative alcohol detection platform, which will provide low cost analysis of BAC. Different tests were undergone using p-nitrophenol, PNP, as recognition element, which include stability, repeatability, and sensitivity. In order to establish the change of PNP in the presence of alcohol, a UV-Vis spectrophotometer was used. For stability and repeatability, an RSD of 1.24% and 4.61% were obtained, respectively. Furthermore, the sensitivity to alcohol concentration was found to have an R2 value equal to 0.987. For the paper-strip application, 10 mm x 60 mm optical sensing membrane (OSM) with immobilized PNP was prepared. It is analysed through the use of digital image captured by a smartphone camera. The RGB values are then measured using the ImageJ software application. The stability, repeatability, and sensitivity of biosensor are 1.85% RSD, 2.23% RSD, and 0.9731 coefficient of linearity, respectively. This method is a promising alternative to breathalyzer.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.