Issue |
MATEC Web Conf.
Volume 152, 2018
9th Eureca 2017 International Engineering Research Conference
|
|
---|---|---|
Article Number | 02017 | |
Number of page(s) | 15 | |
Section | Mechanical Engineering | |
DOI | https://doi.org/10.1051/matecconf/201815202017 | |
Published online | 26 February 2018 |
Lift and Drag of Non-conventional Wings at Subsonic Speeds and Zero Angle of Attack - An Experimental Investigation
School of Engineering, Faculty of Built Environment, Engineering, Technology & Design, Taylor’s University, Subang Jaya, Selangor DE, Malaysia
* Corresponding author: abdulkareem.mahdi@taylors.edu.my
Various non-conventional wing development shows potential in increasing the aerodynamic performance of airplanes. If the non-conventional wing only improves the aerodynamic performance by a small margin, conventional wing is still a better option for airline operators. This provides opportunity to continue research on non-conventional configurations that can greatly saves the fuel consumption. This research was conducted to examine the lift and drag of non-conventional wings at low subsonic speed and low angle of attack. Analytical method based on DATCOM was used to calculate the lift and drag coefficients of non-conventional cranked wing for comparison with experimental results obtained experimentally using Taylor’s wind tunnel (TWT). Experimental lift coefficient shows similar values with the analytical results but experimental drag coefficient had an average difference of 44%. The experimental setup and calibration of TWT were verified and further case studies on nonconventional wing model featuring trailing edge notches were carried out. Analysis of the results from case studies shows that generally the effect of varying the number of notches only had significant effect on drag reduction if the notch depth was higher. For flight condition that does not exceed 4° angle of attack, lower number of notches at higher notch depth had the best aerodynamic performance. On the other hand, for flight condition that requires cruise angle of attack that exceeds 4°, higher number of notches at higher notch depth had the best aerodynamic performance.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.