Issue |
MATEC Web Conf.
Volume 152, 2018
9th Eureca 2017 International Engineering Research Conference
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 14 | |
Section | Chemical Engineering | |
DOI | https://doi.org/10.1051/matecconf/201815201002 | |
Published online | 26 February 2018 |
Drying Kinetics and Optimisation of Pectin Extraction from Banana Peels via Response Surface Methodology
School of Engineering, Taylor’s University, 47500 Subang Jaya, Selangor, Malaysia
* Corresponding author: beelin.chua@taylors.edu.my
Banana peels which are the waste in abundance, are used to extract valuable pectin. The gelling ability of the pectin has gained attention in food and pharmaceutical industries. This research aims to select the best drying kinetic model for banana peels and also optimize the pectin extraction process using Box-Behnken response surface design (BBD). Determination of pectin gelling mechanism using degree of esterification (DE) is also focused in this research. In this study, oven drying with temperature 50°C was chosen as the best drying temperature due to highest extraction yield. Furthermore, Page-Two-term model was selected as the best model to describe the drying kinetics of banana peels due to highest R2 value (0.9991) and lowest RMSE value (0.001). The optimal extraction conditions given by BBD were 75°C extraction temperature, 23 min extraction time and 1:33.3 g/ml solid-liquid ratio. Likewise, the DE for both pectins extracted using unoptimised and optimised conditions were 71.92±1.38% and 76.1±2.07% respectively. Both of the pectins were classified as high-methoxyl pectins. The pectin with higher DE also indicated that the rate of gel formation is higher. The results showed that the pectin yield and gelling time has successfully improved after optimised the pectin extraction process.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.