Issue |
MATEC Web Conf.
Volume 250, 2018
The 12th International Civil Engineering Post Graduate Conference (SEPKA) – The 3rd International Symposium on Expertise of Engineering Design (ISEED) (SEPKA-ISEED 2018)
|
|
---|---|---|
Article Number | 06007 | |
Number of page(s) | 11 | |
Section | Environmental Engineering | |
DOI | https://doi.org/10.1051/matecconf/201825006007 | |
Published online | 11 December 2018 |
Dosage and pH optimization on stabilized landfill leachate via coagulation-flocculation process
Faculty of Civil and Environmental Engineering, Universiti Tun Hussien Onn (UTHM), 86400 Parit Raja, Johor, Malaysia
* Corresponding author: nursha@uthm.edu.my, sitinoraishah.salleh@gmail.com
Treatment on the generated landfill leachate is crucial as it can cause serious toxicological effects and environmental hazards, particularly when the unfavorable contaminants are left accumulated for a long period of time. The purpose of this study was to determine the optimum coagulant dosage of polyaluminium chloride (PAC) in selected dosage ranges (2250-4500 mg/L) and to analyse the ideal pH of leachate sample (pH 3-10). PAC was tested on stabilized leachate taken from Simpang Renggam Landfill Site (SRLS), by investigating the percentage removals of five significant parameters, which were suspended solids, chemical oxygen demand (COD), ammonia, and heavy metals (iron (Fe) and chromium (Cr)). The removal efficiency was determined by a series of experiments using jar test. From the obtained results, it was found that 3750 mg/L and pH 7 were the optimum conditions for PAC dosage and sample pH, respectively. The conventional optimization test showed satisfactory results for suspended solids, COD, Fe, and Cr at 95%, 53%, 97%, and 79% respectively, but had low removal on ammonia at 18%. It can be concluded that the coagulation-flocculation process has the potential to be applied as a primary treatment for stabilized landfill leachate in Malaysia.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.