Issue |
MATEC Web Conf.
Volume 247, 2018
Fire and Environmental Safety Engineering 2018 (FESE 2018)
|
|
---|---|---|
Article Number | 00040 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/matecconf/201824700040 | |
Published online | 10 December 2018 |
Mathematical modeling of thermal fire effect on tanks with oil products
1
Lviv Polytechnic National University, Lviv, Ukraine
2
Cherkassy Institute of Fire Safety named after Heroes of Chornobyl of National University of Civil Defense of Ukraine, Cherkassy, Ukraine
3
Lviv State University of Life Safety, Lviv, Ukraine
* Corresponding author: yakovchukrs@ukr.net
The aim of the work is the development of mathematical models for research that allows to determine the ultimate indicators of the thermal effect on tanks with oil products in a fire. A calculation method was developed to implement the calculation for various scenarios for the development of a fire in a tank with oil. After the calculations, the results of mathematical modeling of the temperature on the walls of the reservoir in the conditions of a fire in neighboring reservoirs in the form of temperature distributions were obtained. Analysis of the temperature distributions showed that the most dangerous scenario is when the fire occurs according to scheme No. 3 in the case of burning an oil torch at a temperature of 1500 K. In each case, the maximum temperature of heating the tank wall is almost unaffected by the oil, which is confirmed by the curves of the maximum temperature curves heating of the reservoir wall, depending on the time of fire impact on adjacent tanks. The maximum temperature of the reservoir wall was determined at the place of its connection with the oil product, it is preserved.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.