Issue |
MATEC Web Conf.
Volume 247, 2018
Fire and Environmental Safety Engineering 2018 (FESE 2018)
|
|
---|---|---|
Article Number | 00009 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/matecconf/201824700009 | |
Published online | 10 December 2018 |
Analysis of the load-bearing capacity of timber members exposed to fire
Cracow University of Technology, The Faculty of Civil Engineering, 24 Warszawska St., 31-155 Cracow, Poland
* Corresponding author: kamil.kmiecik@pk.edu.pl
Members of building structures are often made of wood. There are many advantages of using timber, such as quick erection time, good environmental influence and high energy efficiency. But the fire safety requirement is one of the most important issues concerning the design of timber structures. Safe use in structures depends on a proper knowledge and modelling of the chemical and physical reactions related to the increase of temperature inside the timber members. This paper presents a summary of results from numerical studies on the heat transfer through timber members exposed to fire from different sides. The finite element software SAFIR was used to make two-dimensional thermal models of the timber elements. Then the FE models were used to analyze the heat flow within the members under standard ISO-fire exposure interacting from different sides. On the basis of the 300 °C isotherms, residual cross-sections were determined. Then, the load-bearing capacity of the elements exposed to fire from different sides was determined. The obtained results showed that the location of construction members against the fire has a significant impact of the temperature distribution in the cross-section and, as a result, on the load-bearing capacity of the timber members.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.