Issue |
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
|
|
---|---|---|
Article Number | 01113 | |
Number of page(s) | 5 | |
Section | Main Session: Water System Operations | |
DOI | https://doi.org/10.1051/matecconf/201824601113 | |
Published online | 07 December 2018 |
Study on the Motion Characteristics of Residual Air Mass in Pipelines in Water Transfer Project
1 Key Lab of Hydraulic Machinery Transient, MOE, Wuhan University, Wuhan, China
2 Hubei Water Resources Research Institute, Wuhan, China
3 Bensv Valve Stock co., ltd, Tianjin, China
a Corresponding author: Jiang Jin, 00010482@whu.edu.cn
For long-distance water transfer projects, the residual air mass in the pipeline will not only reduce the efficiency, but also be detrimental to the safety of the system. In order to study the influence of the water flow velocity of the pressurized water pipeline and the pipeline angle of the hump on the motion characteristics of the residual air mass, an experimental platform with Particle Image Velocimetry (PIV) measuring system was constructed to analyse the flow field. The RSM turbulence model was combined with the VOF multiphase flow model to construct a local high-point gas-liquid two-phase fluid dynamics model for numerical simulation. The results showed that with the increase of water flow velocity, the local hump residual air mass would go through three states, namely, no bubble generation, air bubble was generated and partial discharged, and air mass discharge at one time. If the gas was greater than a certain volume, the increase in the water flow rate required to carry the air mass out of the hump at one time would slow down; the larger the local hump angle was, the greater the water flow rate was required to carry the gas out of the local hump part.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.