Issue |
MATEC Web Conf.
Volume 245, 2018
International Scientific Conference on Energy, Environmental and Construction Engineering (EECE-2018)
|
|
---|---|---|
Article Number | 06005 | |
Number of page(s) | 14 | |
Section | Energy Efficient and Green Buildings | |
DOI | https://doi.org/10.1051/matecconf/201824506005 | |
Published online | 05 December 2018 |
Thermal Properties of Conventional and High-strength Concrete
Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
* Corresponding author: tamusorina@mail.ru
Important characteristics for the Nordic countries: a freeze-thaw resistance and an ability of a material to keep heat inside the building. This paper aims to define the thermophysical properties of a high-strength concrete, compare the discovered performance with the conventional concrete properties. With this object in mind two experiments in cold chamber “CHALLENGE 250” have been conducted and followed by analysis. In these experiments, the insulation of facades is beyond the framework of the investigation. Only the thermophysical properties of concrete are taken into account. The samples were affected by temperature fluctuations. Results from the experiments show that strength characteristics of a material are in indirect ratio to accumulation properties of a structure. This conclusion is directly related to porosity of material and additives. During 70 minutes, with outside temperature being below zero, the temperature inside the concrete dropped to an average. As the outside temperature increases significantly to more than zero, the temperature inside the concrete has become below average (continued to decline) in 70 minutes. The more strength of material, the better thermophysical properties. High-strength concrete is less susceptible to temperature fluctuations, therefore more heat-resistant. As mentioned in the paper below, the material has one disadvantage: this is a large cost per cubic meter.
© The Authors, published by EDP Sciences, 2018
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.