Issue |
MATEC Web Conf.
Volume 243, 2018
XIV International Workshop High Energy and Special Materials: Demilitarization, Antiterrorism and Civil Application (HEMs-2018)
|
|
---|---|---|
Article Number | 00008 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/matecconf/201824300008 | |
Published online | 05 December 2018 |
Mathematical modeling of plastic deformation of a tube from dispersion-hardened aluminum alloy
1 Tomsk State University of Architecture and Building, Department of Theoretical Mechanics, 634002, Tomsk, Solyanaya sq. 2, Russia
2 National Research Tomsk State University, Faculty of Physics and Engineering, 634050, Tomsk, Lenina av. 36, Russia
* Corresponding author: olya_dan@mail.ru
The influence of the internal and external pressure subjected to the tube from dispersion-hardened aluminium alloy was investigated. The approach which combines methods of crystal plasticity and mechanics of deformable solid was used to explore the limits of elastic and plastic resistance. The mathematical model of plastic deformation includes balance equations for deformation defects with regard to the generation and annihilation of shear dislocations, vacancy and interstitial prismatic dislocation loops, and dislocations in dipole configurations of vacancy and interstitial types and also equilibrium equation, geometrical and physical relations between the deformations, displacements and stresses. It has been established that as the temperature increases, the limits of the elastic and plastic resistance decrease. Results of investigation demonstrate that the hardening the alloy by nanoparticles significantly improves the strength characteristics of the material.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.