Issue |
MATEC Web Conf.
Volume 243, 2018
XIV International Workshop High Energy and Special Materials: Demilitarization, Antiterrorism and Civil Application (HEMs-2018)
|
|
---|---|---|
Article Number | 00007 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/matecconf/201824300007 | |
Published online | 05 December 2018 |
Combustion peculiarities of coal-methane-air mixtures in a recuperative burner
Tomsk State University, 634050, 36 Lenin av., Tomsk, Russia
* Corresponding author: lminkov@ftf.tsu.ru
Numerical modeling of the combustion of a lean methane-air mixture containing fine coal particles entering the “Swiss-roll” type recuperative burner is considered. The mathematical model is constructed under the following assumptions: the flow field is two-dimensional; the gas mixture is an ideal incompressible gas consisting of oxygen, methane, coal volatile substances, carbon monoxide, carbon dioxide, water vapor, hydrogen and nitrogen. In the gas phase four oxidation reactions, in which methane, volatile matter of coal, carbon monoxide, hydrogen participate and the reaction of carbon dioxide decomposition take place. On the surface of the coal particle, there are three oxidation reactions involving oxygen, carbon dioxide and water vapor, resulting in the formation of carbon monoxide. It is assumed that coal contains 8% of ash, 12.9% of volatile substances and 79.1% of carbon. It is shown that for a two percent methane-air mixture the reaction zone shifts toward the center of the burner as the feed rate of the mixture increases. An increase in the content of coal particles leads to a shift of the reaction zone into the inlet part of the burner, and the heat release in the burner increases.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.