Issue |
MATEC Web Conf.
Volume 151, 2018
2017 Asia Conference on Mechanical and Aerospace Engineering (ACMAE 2017)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 6 | |
Section | Aeronautical Machinery Equipment and Powerplant | |
DOI | https://doi.org/10.1051/matecconf/201815102001 | |
Published online | 21 February 2018 |
Computational modelling of an Organic Rankine Cycle (ORC) waste heat recovery system for an aircraft engine
Department of Aerospace Engineering, Faculty of Engineering, University Putra Malaysia, Malaysia
Escalating fuel prices and carbon dioxide emission are causing new interest in methods to increase the thrust force of an aircraft engine with limitation of fuel consumption. One viable means is the conversion of exhaust engine waste heat to a more useful form of energy or to be used in the aircraft environmental system. A one-dimensional analysis method has been proposed for the organic Rankine cycle (ORC) waste heat recovery system for turbofan engine in this paper. The paper contains two main parts: validation of the numerical model and a performance prediction of turbofan engine integrated to an ORC system. The cycle is compared with industrial waste heat recovery system from Hangzhou Chinen Steam Turbine Power CO., Ltd. The results show that thrust specific fuel consumption (TSFC) of the turbofan engine reach lowest value at 0.91 lbm/lbf.h for 7000 lbf of thrust force. When the system installation weight is applied, the system results in a 2.0% reduction in fuel burn. Hence implementation of ORC system for waste heat recovery to an aircraft engine can bring a great potential to the aviation industry.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.