Issue |
MATEC Web of Conferences
Volume 150, 2018
Malaysia Technical Universities Conference on Engineering and Technology (MUCET 2017)
|
|
---|---|---|
Article Number | 02005 | |
Number of page(s) | 6 | |
Section | Chemical Engineering & Natural Resources | |
DOI | https://doi.org/10.1051/matecconf/201815002005 | |
Published online | 23 February 2018 |
Surface Modification of Nanoclay for the Synthesis of Polycaprolactone (PCL) – Clay Nanocomposite
Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, 26300 Gambang, Pahang Malaysia
* Corresponding author: kamal@ump.edu.my
This paper presents a new modification method to modify the surface of nanoclay (Na-MMT) to increase its d-spacing using Aminopropylisooctyl Polyhedral Oligomeric Silsesquioxane (AP-POSS) and the fabrication of Polycaprolactone (PCL) nanocomposite through solution intercalation technique. The structure and morphology of pure nanoclay, modified nanoclay (POSS-MMT) and the PCL nanocomposite were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FESEM). XRD revealed that the d-spacing of the POSS-MMT is increased by 0.64 nm as compared to pure nanoclay. FTIR and FESEM results also showed that AP-POSS were well dispersed and intercalated throughout the interlayer space of Na-MMT. An exfoliated structure was also observed for PCL/POSS-MMT nanocomposite. Thermal properties of the nanocomposite were investigated using Thermal Gravimetry Analysis (TGA) which recorded highest degradation temperature for PCL/POSS-MMT 1% nanocomposite which is 394.1°C at 50% weight loss (T50%) but a decrease in degradation temperature when POSS-MMT content is increased and Differential Scanning Calorimetry (DSC) analysis which showed highest melting and crystallization temperature for PCL/POSS-MMT 5% nanocomposite which is 56.6°C and 32.7°C respectively whereas a decrease in degree of crystallinity for PCL/POSS-MMT nanocomposite as compared to PCL/Na-MMT nanocomposite. This study affords an efficient modification method to obtain organoclay with larger interlayer d-spacing to enhance the properties of polymer nanocomposite.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.