Issue |
MATEC Web Conf.
Volume 143, 2018
IV International Young Researchers Conference “Youth, Science, Solutions: Ideas and Prospects” (YSSIP-2017)
|
|
---|---|---|
Article Number | 02010 | |
Number of page(s) | 7 | |
Section | Building Materials | |
DOI | https://doi.org/10.1051/matecconf/201814302010 | |
Published online | 08 January 2018 |
Production of environmentally friendly aerated concrete with required construction and operational properties
1
National Research Moscow State University of Civil Engineering, 129337 Moscow, Russia
2
Euroasia MS LLP, 050060 Almaty, Republic of Kazakhstan
3
Financial University under the Government of the Russian Federation, 125993 Moscow, Russia
* Corresponding author: ev_tkach@mail.ru
The purpose of these studies is to justify the feasibility of recycling different types of industrial waste instead of conventional expensive raw materials in production of environmentally friendly aerated concrete with required construction and operational properties. The impact of wastes from various industries on the environmental condition of affected areas, as well as the results of their environmental assessment were analyzed to determine whether these wastes could be used in production of high-performance building materials. The assessment of industrial wastes in aerated concrete production suggests that industrial wastes of hazard class IV can be recycled to produce aerated concrete. An environmentally friendly method for large-scale waste recycling, including a two-step environmentally sustainable mechanism, was developed. The basic quality indicators of the modified aerated concrete proved that the environmental safety could be enhanced by strengthening the structure, increasing its uniformity and improving thermal insulation properties. The modified non-autoclaved aerated concrete products with improved physical and operational properties were developed. They have the following properties: density – D700; class of concrete – B3.5; thermal transmittance coefficient – 0.143 W/(m·°C); frost resistance – F75.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.