Issue |
MATEC Web Conf.
Volume 131, 2017
UTP-UMP Symposium on Energy Systems 2017 (SES 2017)
|
|
---|---|---|
Article Number | 02006 | |
Number of page(s) | 8 | |
Section | Renewable and non-renewable energy resources and power generation | |
DOI | https://doi.org/10.1051/matecconf/201713102006 | |
Published online | 25 October 2017 |
Flow control in s-shaped air intake diffuser of gas turbine using proposed energy promoters
1 Mech. Eng. Dept., Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Malaysia
2 Electromechanical Engineering Department, University of Technology, Baghdad, Iraq
* Corresponding author: hussain_kayiem@utp.edu.my
This paper presents an experimental and numerical investigation of the flow control in an air intake S-shaped diffuser with and without energy promoters. The S-shaped diffuser had an area ratio 3.1and turning angle of 45°/45°. The proposed energy promoter was named as stream line sheet energy promoter. Computational Fluid Dynamics simulation was performed through commercial ANSYS-FLUENT 16.2 software. The measurements were made inside annular subsection, 45° from 360° of the complete annular shape of the diffuser, at Reynolds number 5.8×104 and turbulence intensity 4.1%. Results for the bare S-shaped diffuser (without energy promoters) showed the flow structures within the S-shaped diffuser were dominated by counter-rotating vortices and boundary layer separation especially in the outer surface. The combination of the adverse pressure gradient at the first bend of outer surface and upstream low momentum wakes caused the boundary layer to separate early. The combinations of proposed energy promoters were installed on the inner and outer surfaces at three installation planes. The use of energy promoters resulting in significantly decreased the outer surface boundary layer separation with consequential improving the static pressure coefficient and reduction of total pressure losses
© The authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.