Issue |
MATEC Web Conf.
Volume 130, 2017
The International Conference on Composite Material, Polymer Science and Engineering (CMPSE2017)
|
|
---|---|---|
Article Number | 05002 | |
Number of page(s) | 5 | |
Section | Mechanical and thermal features of composites | |
DOI | https://doi.org/10.1051/matecconf/201713005002 | |
Published online | 25 October 2017 |
Damage behavior of honeycomb sandwich structure under low-energy impact
1 Chengdu Aircraft Industrial (Group) Co., Ltd, PR China
2 Department of Engineering Mechanics, School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510640, P. R. China
a Corresponding author: yaoxh@scut.edu.cn
Honeycomb sandwich structure is widely used in aircrafts and ships to absorb impact energy. Damage caused by low-energy impact is difficult to investigate, but will significantly reduce the strength of the sandwich structure. This paper presented a systematical experimental study on the damage behavior of honeycomb sandwich structure under different configurations. Drop weight tests were carried out to investigate the effect of impact energy, core material and face plate structure on the dynamic response of sandwich plate. Delamination regions were obtained through ultrasonic scanning. Conclusions were made that the damage behavior of the face plate was similar with composite laminates while the energy absorption capacity was related to the parameters of the honeycomb core and the mismatch angle of the face plate.
© The authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.