Issue |
MATEC Web Conf.
Volume 128, 2017
2017 International Conference on Electronic Information Technology and Computer Engineering (EITCE 2017)
|
|
---|---|---|
Article Number | 03006 | |
Number of page(s) | 6 | |
Section | Electronic Material | |
DOI | https://doi.org/10.1051/matecconf/201712803006 | |
Published online | 25 October 2017 |
Microstructure and mechanical properties of 304L steel fabricated by arc additive manufacturing
School of Mechanical Engineering, Beijing Institute of Technology, Beijing, Zhongguancun south Street, 100081, China
a Corresponding author: liuchangmeng@bit.edu.cn
For 304L large structural parts used in nuclear power, it is hard and costly to fabricate and machine traditionally. Wire arc additive manufacturing (WAAM) has low cost and high material utilization, which provides an efficient way to fabricate the large structural parts. So in this study, WAAM is used to fabricate the parts of 304L stainless steel. Through the tensile test and metallographic analysis, the mechanical properties and microstructure of the 304L stainless steel fabricated by WAAM were explored. The results indicate that with the layers depositing, the cooling rate becomes slower, the dendrites become thicker and the morphology becomes more stable. Due to the existence of dendrites, the grain boundary strengthening effect is different between the transverse direction and longitudinal direction, and resulting in anisotropy of mechanical properties. However, the mechanical properties of the parts correspond to the forged piece, which lays the foundation for future applications.
© The authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.