Issue |
MATEC Web Conf.
Volume 125, 2017
21st International Conference on Circuits, Systems, Communications and Computers (CSCC 2017)
|
|
---|---|---|
Article Number | 04004 | |
Number of page(s) | 6 | |
Section | Computers | |
DOI | https://doi.org/10.1051/matecconf/201712504004 | |
Published online | 04 October 2017 |
A Comparative Study of Control Methods for a Robotic Manipulator with Six DOF in Simulation
Piraeus University of Applied Sciences, Department of Automation Engineering, 12244, P. Ralli & Thivon 250, Athens, Greece
* Corresponding author: giouli.smyrnaiou@gmail.com
In this paper a comparative study of the classical control methods for the testing of a mathematical model, which controls six actuators of a six degrees of freedom robotic arm with a single controller, is illustrated, aiming to the constructive simplification of the system. In more detail, a mathematical model of the system is designed which simulates all mechanical parts, including 5-way directional pneumatic valve, the pneumatic actuators/pistons and the mathematical model of the controller. The purpose of the above is the tuning of a Single Input, Multiple Output (SIMO) controller which will direct the motion of the six pneumatic pistons. The thorough analysis of the implementation of the pneumatic system in Matlab/Simulink environment is followed by experimentation and results using Proportional (P), Proportional-Integral (PI), Proportional-Derivative (PD) and Proportional-Integral-Derivative (PID) controllers. The simulation results show the advantages of the above classical control methods on the robotic human arm which imitating human motion and made by a well-known company in the field of pneumatic automation.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.